S.I. Ltd Contract No: 6301

Client: Kildare County Council
Engineer: Hayes Higgins Partnership
Contractor: Site Investigations Ltd

Craddockstown, Naas, Co. Kildare Site Investigation Report

Prepared by:	
Stephen Letch	

Issue Date:	04/09/2024
Status	Final
Revision	0

<u>6301 – Craddockstown</u> <u>Naas, Co. Kildare</u>

Contents:		Page No.
1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	3
5.	Ground Conditions	4
6.	Recommendations and Conclusions	5

Appendices:

- 1. Cable Percussive Borehole Logs
- 2. Trial Pit Logs and Photographs
- 3. Soakaway Test Result
- 4. Environmental Laboratory Test Results
- 5. Waste Classification Report
- 6. Survey Data

1. Introduction

On the instructions of Hayes Higgins Partnership, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Craddockstown, Naas, Co. Kildare. The investigation was for a residential development and was completed on behalf of the Client, Kildare County Council. The fieldworks were completed in June 2024.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

Craddockstown is to the south of Naas town centre, to the south west of Dublin. The map on the left below shows the location of Naas in Co. Kildare and the second map shows the location of the site in the town.

3. Fieldwork

All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design. The fieldworks comprised of the following:

- 3 No. cable percussive boreholes
- 5 No. trial pits
- 1 No. soakaway test

3.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 3 No. locations using a Dando 2000 rig and constructed 200mm diameter boreholes. The boreholes terminated at depths ranging from 3.80mbgl (BH03) to 7.70mbgl (BH01) after an hour and a half chiselling was completed and no further progress was made. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH01 at 1.00mbgl where N=9-(1,2/2,3,2,2)). Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g., BH01 at 5.00mbgl where N=50-(5,12/50 for 275mm)).

At BH01, a groundwater standpipe was installed to allow for the equalisation of the water table and long-term monitoring. These included a gravel response zone around the slotted standpipe with bentonite seals at the top of the holes to stop migration of water from the surface.

The cable percussive borehole logs are presented in Appendix 1.

3.2. Trial Pits

5 No. trial pits were excavated using a wheeled excavator and they were logged and photographed by SIL geotechnical engineer. Representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing. Any groundwater ingresses and pit wall stability were also logged as the pits were excavated with the pits backfilled with the arisings immediately upon completion.

The trial pit logs and photographs are presented in Appendix 2.

3.3. Soakaway Tests

At TP04, a soakaway test was completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final cycle is

used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The soakaway test result is presented in Appendix 3.

3.4. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and along with a site plan in Appendix 6.

4. Laboratory Testing

Environmental testing was completed by ALS Environmental Ltd. and consists of the following:

• 3 No. Suite I analysis

The environmental tests are reported in Appendix 4 and a Waste Classification Report in Appendix 5.

5. Ground Conditions

5.1. MADE GROUND

MADE GROUND was recorded at TP05 to the north of the site to a depth of 1.50mbgl and was logged as grey brown sandy gravelly cobbles with some red brick and bone fragments recorded.

5.2. Overburden

The natural ground conditions vary slightly with BH01 recorded cohesive CLAY over granular SAND soil at 1.60mbgl. The soils remain as granular soils with GRAVEL dominant soils also recorded in the borehole. BH02 recorded cohesive soils to 4.80mbgl before granular GRAVEL soils were encountered and finally BH03 terminated at 3.80mbgl still within the cohesive CLAY soils.

The trial pits recorded slightly different conditions with TP02 only recording cohesive CLAY soils whereas TP01 to the west recorded CLAY over SAND with the boundary at 1.90mbgl with TP03 and TP04, to the east recording SAND at 0.90mbgl and 0.60mbgl respectively below thin layers of CLAY soil. Finally, TP05 recorded SAND beneath the fill material at 1.50mbgl.

The SPT tests recorded different profiles with similar values of 9 to 11 at 1.00mbgl then the values range from 9 in BH01, 14 in BH02 and 28 in BH03 at 2.00mbgl. BH01 values remain lower with values of 14 and 16 at 3.00mbgl and 4.00mbgl and then refusals from 5.00mbgl onwards. BH02 recorded a value of 48 at 3.00mbgl before recording refusals whereas BH03 recorded refusal at 3.00mbgl. The graph below shows SPT N-values vs depth.

5.3. Groundwater

No groundwater was recorded in the boreholes or the trial pits during the fieldworks.

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

MADE GROUND was encountered at TP05 to 1.50mbgl. SIL do not recommend that narrow shallow foundations are placed on fill material due to the unknown compaction methods used during laying of man-made material. This unknown could result in softer spots and differential settlement once construction is completed. If shallow foundations are to be used and man-made soils are encountered below foundation level, then the soil should be removed and replaced with engineered fill which is compacted to the required standard.

For cohesive soils, a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices can be used to calculate the undrained shear strength. Dependent on the plasticity index at each site, the Stroud and Butler correlation is C_u =4 to 6N. With the low plasticity indexes recorded in the laboratory for the soils on this site, the correlation chosen is C_u =6N. The C_u value can then be used to calculate the ultimate bearing capacity, which is the total loading that the soil could withstand but then a factor of safety is used to ensure that failure of the soils does not occur. A factor of safety of 3 has been chosen for this site.

In granular soils, the SPT N-value can then be used to calculate the allowable bearing capacity, as per Terzaghi and Peck, using the correlation of SPT N-value \times 10 = ABC.

The table overleaf shows the SPT N-value, C_u , the ultimate bearing capacity and finally, the allowable bearing capacities at 1.00mbgl, 2.00mbgl and 3.00mbgl. For the refusals, no bearing capacity is calculated. The C_u , ultimate bearing capacity and allowable bearing capacities are in kN/m^2 .

Depth		BH	101		BH02							
	N-Value	Cu	UBC	ABC	N-Value	Cu	UBC	ABC				
1.00	9	54	294	100	11	66	356	120				
2.00	9	-	-	90	14	84	464	155				
3.00	14	-	-	140	49	294	1553	515				
Depth		BH	103									
	N-Value	Cu	UBC	ABC								
1.00	10	60	325	110								
2.00	28	168	893	300	1							
3.00	_1	_1	_1	_1								

It would be recommended that all founding strata be inspected by a suitably qualified Engineer prior to pouring the foundations and additional insitu testing completed if required to confirm the soils are suitable for the final foundation design.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type.
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- Based on groundwater observations this analysis assumes the groundwater will not influence the construction or performance of these foundations.
- All bearing capacity calculations allow for 25mm settlement.

The trial pit walls generally remained stable during excavation but it would be recommended due to the high sand and gravel content in the soils, that all excavations should be checked immediately and battered back accordingly. Regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted:

There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall or any nearby construction sites.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, no groundwater was recorded in the boreholes or trial pits during the fieldworks.

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00mbgl) into excavations of the CLAY will be slow to medium.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Soakaway Tests

The soakaway tests at TP04 passed the specification with f-value calculated as 1.44 x 10-4 m/s.

It would be recommended that the soakaways are placed in the higher permeability granular soils rather than the cohesive clay and silt soils.

6.4. Contamination

Environmental testing was carried out on three samples from the investigation and the results are shown in Appendix 4. For material to be removed from site, Suite I testing was carried out to determine if the material is hazardous or non-hazardous and then the leachate results were compared with the published waste acceptance limits of BS EN 12457-2 to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill.

The Waste Classification report created using HazWasteOnline™ software shows that the material tested can be classified as non-hazardous material.

Following this analysis of the solid test results, the leachate disposal suite results indicate that the soils tested would generally be able to be treated as Inert Waste.

Three samples were tested for analysis but it cannot be discounted that any localised contamination may have been missed. Any MADE GROUND excavated on site should be stockpiled separately to natural soils to avoid any potential cross contamination of the soils. Additional testing of these soils may be requested by the individual landfill before acceptance and a testing regime designed by an environmental engineer would be recommended to satisfy the landfill.

6.6. Radon Gas

The Environmental Protection Agency (EPA) has recently updated the Radon gas exposure map and this is available to view on the EPA website. This shows the possible exposure to radon gas with the bedrock geology, subsoil geology, soil permeability and aquifer type analysed to produce the map. The map below shows that the site falls within the medium level of radon exposure. Measures should be taken in the form of radon protection barriers from radon exposure in the new structure.

EPA map identifying possible Radon exposure.

https://gis.epa.ie/EPAMaps/Radon?&lid=EPA:RadonRiskMapofIreland

Appendix 1 Cable Percussive Borehole Logs

Contract No: 6301	Cable Percussion	n Bo	rel	nole	Lo	g		В	orehole BH0	
Contract:	Craddockstown	Easting	:	690165	5.209		Date Started:	18/06	5/2024	
ocation:	Naas, Co. Kildare	Northin	g:	718051	.001	I	Date Completed:	18/06	6/2024	
lient:	Kildare County Council	Elevation	n:	118.13			Drilled By:	D. Mo	Eoin	
ngineer:	Hayes Higgins Partnership	Boreho Diamet		200mm	1		Status:	FINA	L	
Depth (m)	Stratum Description	Legend		(mOD)			and Insitu Tes	ts	Water	Back
cale Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Strike	
0.20	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.		118.0 — - - - 117.5 —	117.93						
1.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.	0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X	- 117.0 — - -	116.93	1.00 1.00	B C	DMc01 N=9 (1,2/2,3			
1.60	Loose becoming medium dense dark brown silty slightly gravelly SAND with low cobble content.		116.5 —	116.53	2.00 2.00	B C	DMc02 N=9 (1,2/2,2			
2.5 -			115.5 — 		3.00 3.00	B C	DMc03 N=14 (2,3/3,			
0 —			114.5 —		4.00 4.00	ВС	DMc04 N=16 (3,3/4,			
4.80	Dense brown slightly silty sandy GRAVEL with low cobble content.		113.5 — - - - 113.0 —	113.33	5.00 5.00	B C	DMc05 N=50 (5,12/5 275mm	50 for		
5 - 5.50	Dense brown slightly silty gravelly SAND with low cobble content.		112.5 — 	112.63	6.00 6.00	B C	DMc06 N=50 (8,12/s			
5 - 6.40	Dense brown slightly silty sandy GRAVEL with high cobble content.		111.5	111.73	3.00	•	255mm			
0			111.0 —		7.00 7.00	B C	DMc07 50 (9,14/50 225mm) for		
7.60 7.70	Obstruction - possible boulders. End of Borehole at 7.70m	*******	110.5 — - - -	110.53 110.43	7.70	С	50 (25 fo 5mm/50 for			
	6.50 6.70 01:00 18/06 7.70 Dry	Install: -rom: To 0.00 1.5 1.50 7.7	o: Pipe	e: From: 7	Backfill: To: Typ .00 Bento .70 Gra	onite to	Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S S: Split sp	urbed onmen SPT

Contract		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contract:	:	Craddockstown	Easting	j:	690194	1.962		Date Started:	17/06	6/2024	
Location:	:	Naas, Co. Kildare	Northin	g:	717993	3.250		Date Completed:	17/06	6/2024	
Client:		Kildare County Council	Elevation	on:	119.17			Drilled By:	D. Mo	cEoin	
Engineer	r:	Hayes Higgins Partnership	Boreho		200mm	1		Status:	FINA	L	
Depth ((m)	Stratum Description	Legend		(mOD)	Sai	mples	and Insitu Tes	ts	Water	Backfil
Scale D	Depth	TOPSOIL.	~//X\\//	Scale	Depth	Depth	Туре	Result		Strike	X//XX///
0.5 -	0.20	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.		119.0 —	118.97	1.00 1.00	ВС	DMc08 N=11 (1,2/2,			
1.5 -	1.70	Firm becoming very stiff grey brown slightly sandy gravelly silty CLAY with medium cobble content.		118.0 —	117.47	2.00	ВС	DMc09 N=14 (2,2/3,)		
3.0 —				116.5 — 116.0 — 115.5 —		3.00 3.00	ВС	DMc10 N=49 (4,8/8,14,13			
4.0 —				115.0 —		4.00 4.00	B C	DMc11 N=50 (8,10/2 275mm	50 for		
5.0 —	4.80	Dense brown slightly silty sandy GRAVEL with high cobble content.		114.5 114.0 113.5	114.37	5.00 5.00	B C	DMc12 N=50 (9,13/ 245mm	50 for		
6.0 —				113.0 — 		6.00 6.00	B C	DMc13 50 (6,13/50 215mm	0 for		
-	7.10 7.30	Obstruction - possible boulders. End of Borehole at 7.30m		112.0 —	112.07	7.00 7.00 7.30	B C C	DMc14 50 (25 fo 85mm/50 15mm) 50 (25 fo 5mm/50 for	or for) or		
(Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: De	Install From: To	ation:	e: From:	Backfill: To: Typ .30 Arisi		Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S	urbed onmental SPT

Contra		Cable Percussion	n Bo	orel	nole	Lo	g		В	orehole BH0	
Contrac	ot:	Craddockstown	Easting	j:	690222	2.573		Date Started:	14/06	/2024	
Locatio	n:	Naas, Co. Kildare	Northin	g:	718062	2.963		Date Completed:	14/06	14/06/2024	
Client:		Kildare County Council	Elevation	on:	116.57			Drilled By:	D. Mo	Eoin	
Engine	er:	Hayes Higgins Partnership	Boreho		200mm	1		Status:	FINA	L	
Depth		Stratum Description	Legend	Level	(mOD)			and Insitu Tes		Water Strike	Backfill
Scale _	Depth	TOPSOIL.		Scale 116.5 -	Depth	Depth	Туре	Result		Strike	
0.5 —	0.30	Firm brown slightly sandy slightly gravelly silty CLAY with low cobble content.		116.0 — 	116.27	1.00	B C	DMc15 N=10 (1,1/2,			
2.0 —	1.50	Stiff becoming very stiff grey brown slightly sandy gravelly silty CLAY with high cobble content.		115.0 —	115.07	2.00 2.00	B C	DMc16 N=28 (2,3/4,			
3.0 —	3.60	Obstruction - boulders.		113.5 - - - - - - - - 113.0 -	112.97	3.00 3.00	B C	DMc17 50 (8,12/50 225mm	0 for		
4.0 —	3.80	End of Borehole at 3.80m	0,00	112.5 - - - - - - - - - - -	112.77	3.80	С	50 (25 fc 5mm/50 for			
5.0				111.5 - - - - - -							
5.5 —				111.0 — - - - - 110.5 —							
6.5 —				110.0 —	-						
7.0 — - - - 7.5 —				109.5 -	-						
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Depth: D	Install From: To	ation: o: Pipe	e: From:			Remarks: orehole terminated o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undisto ES: Enviro W: Water C: Cone S S: Split sp	urbed onmental

Appendix 2 Trial Pit Logs and Photographs

	act No: 301		-	Trial Pi	t Log	J							Trial Pit	
Contr	act:	Craddockstown			Easting:		690133	3.629		Date:		07/	06/2024	
Locat	ion:	Naas, Co. Kildare			Northing:		718036	3.341		Excavat	or:	JC	в зсх	
Client	::	Kildare County Cour	ncil		Elevation:		118.64			Logged	Ву:	M.	Kaliski	
Engin	eer:	Hayes Higgins Partn	nership		Dimension (LxWxD)		4.30 x	0.70 x	3.40	Status:		FIN	NAL	
Level	(mbgl)		Stratum Descripti		7		_egend	Level		<u> </u>	-	Field Tests		Water
Scale:	Depth	TOPSOIL.	<u> </u>			8		Scale:	Depth	: Depth	Ту	ре	Result	Strike
0.5 —	0.40	Soft brown slightly san content. Sand is fine to subrounded of limesto limestone. Soft becoming firm growith medium cobble a Gravel is fine to coars Cobbles and boulders 300mm diameter).	to coarse. Gravel is to coarse. Gravel is to come. Cobbles are and ey brown slightly sailing low boulder contribute, angular to subrou	fine to coarse, gular to subroundy gravelly si ent. Sand is fir unded of limes	angular to unded of Ity CLAY ne to coars tone.	se.		118.5 —	118.4		E		MK01	
1.5 —		Firm grey brown sligh medium boulder conte fine to coarse. Gravel limestone. Cobbles ar limestone (up to 300m	ent and bands of silt is fine to coarse, an nd boulders are ang	y sandy grave gular to subro	I. Sand is unded of	8.70:8.70:8.70:8.70:8.70:8.70:8.70:8.70:		117.5 —	117.34	1.50	E	3	MK03	
2.0 —		Grey brown silty grave boulder content. Grav limestone. Cobbles ar limestone (up to 400m	rel is fine to coarse, and boulders are angu	angular to sub	rounded o			- - 116.5 — -	116.74	4				
2.5 —						× o × o × o		- 116.0 — - -		2.50	E	3	MK04	
- - -	3.40	Obstruction - boulders	5.			×		- 115.5 – - -	115.2	4				
3.5 —			Pit terminated at 3.40	0m				- 115.0 — -	-					
4.0 —								- - 114.5 – -						
4.5 — — — —								- 114.0 — - -						
		Termination:	Pit Wall Stability:	Groundwater	Rate: Re	emar	ks:			Key	:			
			Pit walls stable.	Dry	-					B = D = CBF	Bull Sm	all di distu	turbed isturbed ırbed CBR ıental	

	act No: 301	Trial Pi	t Log							Pit No:
Contr	act:	Craddockstown	Easting:	690173	3.432		Date:		07/06/202	4
Locat	ion:	Naas, Co. Kildare	Northing:	718003	3.616		Excavato	r:	JCB 3CX	
Client	::	Kildare County Council	Elevation:	119.27			Logged B	y:	M. Kaliski	
Engin	eer:	Hayes Higgins Partnership	Dimensions (LxWxD) (m):	4.40 x	0.70 x	2.80	Status:		FINAL	
Level	(mbgl)	Stratum Description		Legend	Level	(mOD)) Samp	les /	Field Test	l l
Scale:	Depth	TOPSOIL.		Z	Scale:	Depth	: Depth	Тур	pe Resu	It Strike
1.5 — 2.0 — 2.0 — - - - - - - - - - - - - -	0.20	Soft brown slightly sandy gravelly silty CLAY with media content. Sand is fine to coarse. Gravel is fine to coarse, subrounded of limestone. Cobbles are angular to subrounded of limestone. Soft becoming firm grey brown slightly sandy gravelly swith high cobble, low boulder content interbedded with gravel. Sand is fine to coarse. Gravel is fine to coarse, subrounded of limestone. Cobbles and boulders are an subrounded of limestone (up to 300mm diameter). Firm becoming stiff grey brown slightly sandy gravelly swith high cobble, medium boulder content interbedded sandy gravel. Sand is fine to coarse. Gravel is fine to coangular to subrounded of limestone. Cobbles and bould angular to subrounded of limestone (up to 300mm diameter).	angular to unded of ilty CLAY silty sandy angular to gular to ilty CLAY with silty parse, ders are		119.0 — 118.5 — 118.0 — 117.5 — 117.5 — 117.0 —	119.0	1.00	В		
2.5 —	2.80	Very stiff grey brown slightly sandy gravelly silty CLAY of cobble and low boulder content. Sand is fine to coarse. fine to coarse, angular to subrounded of limestone. Cobboulders are angular to subrounded of limestone (up to diameter). Pit terminated due to strength of soils. Pit terminated at 2.80m	Gravel is obles and			116.7	2.70	В	MK0	7
3.5 —					- - - - 115.5 –					
4.0 —					- - 115.0 — - -					
-		Termination: Pit Wall Stability: Groundwate	r Rate: Rema	ırks:	- 114.5 — - -	-	Key:			
		Strength of soil. Pit walls stable. Dry	- Nate. Nema				B =		disturbed	
(The want stable.					D = CBR	Sma Unc	all disturbed disturbed C onmental	

	act No: 301		-	Trial Pi	t Log						Trial Pit TP0	
Contr	act:	Craddockstown			Easting:	69022	4.296		Date:		07/06/2024	
Locat	ion:	Naas, Co. Kildare			Northing:	71800	2.027		Excavato	r:	JCB 3CX	
Client	t:	Kildare County Co	uncil		Elevation:	118.76	i		Logged B	By:	M. Kaliski	
Engin	ieer:	Hayes Higgins Par	rtnership		Dimensions (LxWxD) (m	15 711 9	5.20 x 0.70 x 4.10 Status: F				FINAL	
Level	(mbgl)		Stratum Descripti	'	(=/////=) (Legend		(mOD	.	oles / I	Field Tests	Water
Scale:	Depth	TOPSOIL.				2090	Scale:	Depth	: Depth	Тур	e Result	Strike
0.5 —	0.90	Soft brown slightly s content. Sand is fine subrounded of limes limestone. Grey silty gravelly fi	candy gravelly silty CL. e to coarse. Gravel is footnered to coarse are and	fine to coarse, gular to subrou	angular to unded of		118.5 —	118.50	0.50	ES		
1.5 —		Gravei is fine to coa Cobbles are angula	rse, angular to subrou r to subrounded of lim	inaea ot limest	one.		117.5 —		1.00		WINCO	
2.0 — — — — — — — — — — — — — — — — — — —			evelly fine to coarse SA e to coarse, angular to				- 116.5 - - - - - - 116.0 —	116.60	2.50	В	MK10	
3.5 —	4.40	GRAVEL of limestor	ry sandy fine to coarse ne with low cobble con e angular to subrounde o strength of soils. Pit terminated at 4.10	ntent. Sand is f	ine to	9X 9	115.5 -	114.9	4.00	В	MK11	
4.5 —							114.0 —					
		Termination:	Pit Wall Stability:	Groundwater	Rate: Ren	narks:			Key:			
	(1)	Strength of soil.	Pit walls stable.	Dry	-					Sma = Und	disturbed ill disturbed listurbed CBF onmental	2

	act No: 301		•	Trial Pi	t Log						Trial Pit TP0	
Contr	act:	Craddockstown			Easting:	690228	3.449		Date:		07/06/2024	
Locat	ion:	Naas, Co. Kildare			Northing:	71802	5.127		Excavato	r:	JCB 3CX	
Client	t:	Kildare County Co	uncil		Elevation:	118.11			Logged E	By:	M. Kaliski	
Engin	ieer:	Hayes Higgins Par	tnership		Dimensions (LxWxD) (m)	4.90 x	0.70 >	4.00	Status:		FINAL	
Level	(mbgl)		Stratum Descript	ion	<u> </u>	Legend	Level	(mOD) Samp	oles /	Field Tests	Water
Scale:	Depth	TOPSOIL.	Stratum Descript	1011		Legend	Scale:	Depth	: Depth	Тур	e Result	Strike
1.5 — 2.0 — 3.5 — 4.0 — 4.0 —	1.40	content. Sand is fine subrounded of limes limestone. Grey brown silty gra content and occasio to subrounded of limitimestone. Grey brown silty gra content. Gravel is fine subrounded is fine subrounded.	andy gravelly silty CL to coarse. Gravel is stone. Cobbles are an velly fine to coarse Sanal clay bands. Gravel nestone. Cobbles are velly fine to coarse Sana to coarse, angular are angular to subrout or strength of soils.	AND with low of angular to subrounded of limesters	angular to unded of cobble rse, angular rounded of		117.0 — 116.5 — 116.5 — 115.5 — 115.5 — 114.5 —	117.9	1 1.00 1 2.50	В	MK13	
4.5 —			Pit terminated at 4.0	oin			114.0 —					
		Termination:	Pit Wall Stability:	Groundwater	· Rate: Rema	ırks.			Key:			
		Strength of soil.	Pit walls stable.	Dry	-				B = D = CBR	Bulk Sma = Und	disturbed ill disturbed listurbed CBR onmental	ł

	act No: 301		-	Trial Pit L	og						Trial Pit	
Contr	act:	Craddockstown		East	ing:	690207	7.844		Date:		07/06/2024	
Locat	ion:	Naas, Co. Kildare		North	ning:	718050).177		Excavato	r:	JCB 3CX	
Client	t:	Kildare County Cou	ıncil	Eleva	ation:	115.49			Logged E	Ву:	M. Kaliski	
Engin	ieer:	Hayes Higgins Part	tnership		ensions /xD) (m):	4.90 x	0.70 x	4.10	Status:		FINAL	
	(mbgl)		Stratum Descripti	ion		Legend		(mOD)	·		Field Tests	Water
Scale:	1 () 1() 1	TOPSOIL.					Scale:	115.39	· ·	Тур	pe Result	Cunto
_	0.10	MADE GROUND: gr	ey brown sandy grave	elly silty clay.			- -	-				
0.5 —		MADE GROUND: gr brick and bone fragm	ey brown sandy grave nents.	elly cobbles with so	me red		- 115.0 — -	115.09	0.50	E	S MK15	
1.0							- 114.5 —	-	1.00	В	MK16	
- -							-	-				
1.5 — - - -			e to coarse SAND wi se, angular to subrou		oands.		114.0 — - -	113.99	9			
2.0 —							- 113.5 - - -					
2.5 —							- - 113.0 — - -	-	2.50	В	8 MK17	
3.0 —							- - 112.5 – -	-				
3.5 —							- - 112.0 —	-				
- - 4.0 —							- - - 111.5 –	-	4.00	В	8 MK18	
v — - -	4.10	Pit terminated due to	strength of soils. Pit terminated at 4.10	Dm .			-	111.39			WINTO	
4.5 —							- 111.0 — - -					
		Termination:	Pit Wall Stability:	Groundwater Rate	e: Rema	rks:	_		Key:			
	§)	Strength of soil.	Pit walls stable.	Dry	-					Sma = Und	disturbed all disturbed disturbed CBF onmental	₹

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Sidewall

TP04 Spoil

TP05 Sidewall

TP05 Spoil

Appendix 3 Soakaway Test Result

SOAKAWAY TEST

Project Reference:	6301
Contract name:	Craddockstown
Location:	Naas, Co. Kildare
Toot No.	TD04

 Test No:
 TP04

 Date:
 07/06/2024

Ground Conditions									
From	То								
0.00	0.20	TOPSOIL.							
0.20	0.60	Soft brown slightly sandy gravelly silty CLAY with low cobble content.							
0.60	1.40	Grey brown silty gravelly SAND with low cobble content and occasional clay bands.							
1 40	2 10	Grey brown silty grayelly SAND with low cobble content							

1.40	2.10
Elapsed Time	Fall of Water
(mins)	(m)
0	1.29
0.5	1.30
1	1.31
1.5	1.32
2	1.33
2.5 3	1.34
	1.35
3.5	1.36
4	1.37
4.5	1.38
5	1.39
6 7	1.41
	1.43
8	1.44
9	1.46
10	1.48
12	1.53
14	1.57
16	1.61
18	1.65
20	1.70
25	1.80
30	1.90
35	2.01
40	2.10

brown silly gravelly SAND will	I IOW CODDIE	content.
Pit Dimensions (m)		
Length (m)	3.10	m
Width (m)	0.70	m
Depth	2.10	m
Water		
Start Depth of Water	1.29	m
Depth of Water	0.81	m
75% Full	1.49	m
25% Full	1.90	m
75%-25%	0.41	m
Volume of water (75%-25%)	0.88	m3
Area of Drainage	15.96	m2
Area of Drainage (75%-25%)	5.25	m2
Time		
75% Full	10.5	min
25% Full	29.875	min
Time 75% to 25%	19.375	min
Time 75% to 25% (sec)	1162.5	sec

 $f = \underbrace{0.00864}_{m/min} \text{ or }$

1.44E-04 m/s

Appendix 4 Environmental Laboratory Test Results

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

Tel: (01244) 528777

email: hawardencustomerservices@alsglobal.com Website: www.alsenvironmental.co.uk

Site Investigations Ltd The Grange Carhugar 12th Lock Road Lucan Co. Dublin

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date of report Generation: 24 June 2024

Customer: Site Investigations Ltd

Sample Delivery Group (SDG): 240617-36 Your Reference: 6301

Location: Craddockstown, Naas

 Report No:
 732635

 Order Number:
 24/B/24

We received 3 samples on Monday June 17, 2024 and 3 of these samples were scheduled for analysis which was completed on Monday June 24, 2024. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan
Operations Manager

CERTIFICATE OF ANALYSIS

Validated

SDG: 240617-36 Client Ref.: 6301

Report Number: 732635 Location: Craddockstown, Naas

Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
29942239	TP 01		0.50 - 0.50	
29942240	TP 03		0.50 - 0.50	
29942241	TP 05		0.50 - 0.50	

Only received samples which have had analysis scheduled will be shown on the following pages.

Superseded Report:

CERTIFICATE OF ANALYSIS

SDG: 240617-36 Client Ref.: 6301

Report Number: 732635 Location: Craddockstown, Naas

				2	29						
Lab Sample	No(s))942239			9942240				29942241	
				9						_	
Customer Sample Reference				TP 01	TP 03			=		TP 05	
AGS Refere	ence										
Depth (n	n)			0.50 - 0.50			0.50 - 0.50			0.50 - 0.50	
Contain	Container				1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	
Sample Ty	/pe	S	S	S	S	S	S	S	S	S	
All	NDPs: 0 Tests: 3	Х			X			X			
All	NDPs: 0 Tests: 3	Х			Х			X			
All	NDPs: 0 Tests: 3		Х			X			Х		
All	NDPs: 0 Tests: 3		Х			X			X		
All	NDPs: 0 Tests: 3	Х			X			X			
All	NDPs: 0 Tests: 3	Х			Х			X			
All	NDPs: 0 Tests: 3		Х			X			Х		
All	NDPs: 0 Tests: 3		Х			X			Х		
All	NDPs: 0 Tests: 3	Х			X			X			
All	NDPs: 0 Tests: 3			Х			X			Х	
All	NDPs: 0 Tests: 3		Х			X			Х		
All	NDPs: 0 Tests: 3		Х			Х			Х		
All	NDPs: 0 Tests: 3	Х			X			Х			
All	NDPs: 0 Tests: 3		Х			Х			X		
All	NDPs: 0 Tests: 3		X			X			Х		
	Custome Sample Reference AGS Reference Depth (reference) Sample Ty All All All All All All All A	AGS Reference Depth (m) Container Sample Type All NDPs: 0 Tests: 3 All NDPs: 0 Tests: 3	Customer Sample Reference AGS Reference Depth (m) Sample Type All NDPs: 0 Tests: 3 All NDPs: 0 Tests: 3	Customer Sample Reference	Customer Sample Reference	Customer Sample Reference Customer Container Container	Customer Sample Reference Customer Container Container	Customer Sample Reference TP 03	Customer Sample Reference Po	Customer Sample Reference	

Validated

CERTIFICATE OF ANALYSIS

SDG: 240617-36 Client Ref.: 6301 Report Number: 732635 Location: Craddockstown, Naas

Superseded Report:

Chefft Ref.										LOVVI	.,		
Results Legend X Test No Determination	Lab Sample	No(s)			29942239			29942240			29942241		
Possible Sample Types -	Customer Sample Reference			TP 01			TP 03			TP 03			TP 05
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere												
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (n	n)			0.50 - 0.50			0.50 - 0.50	C		0.50 - 0.50		
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container			250g Amber Jar (ALE210)	60g VOC (ALE215)	1kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)	1 kg TUB with Handle (ALE260)	250g Amber Jar (ALE210)	60g VOC (ALE215)		
	Sample Type			S	S	S		S	S	S			
PAH by GCMS	All	NDPs: 0 Tests: 3		X			X			X			
PCBs by GCMS	All	NDPs: 0 Tests: 3		Х			X			Х			
рН	All	NDPs: 0 Tests: 3		Х			Х			X			
pH Value of Filtered Water	All	NDPs: 0 Tests: 3	Х			X			X				
Phenols by HPLC (W)	All	NDPs: 0 Tests: 3	Х			X			X				
Sample description	All	NDPs: 0 Tests: 3		X			X			X			
Total Organic Carbon	All	NDPs: 0 Tests: 3		Х			Х			X			
TPH CWG GC (S)	All	NDPs: 0 Tests: 3		Х			X			X			
VOC MS (S)	All	NDPs: 0 Tests: 3			X			X			Х		

Client Ref.: 6301

CERTIFICATE OF ANALYSIS

Report Number: 732635 Superseded Report: Validated

Location: Craddockstown, Naas

Sample Descriptions

Grain Sizes

very fine <	.063mm	fine	0.0631	mm - 0.1mm	medium	0.1mm	ı - 2mm	coars	se 2mm	· 10mm	very coar	se >1	.0mm
Lab Sample No(s) Customer	Sample	Ref.	Depth (m)	Col	our	Descrip	tion	Inclusions	Inclu	usions 2		
29942239	1	TP 01		0.50 - 0.50	Dark	Brown	Sandy L	oam	Stones	1	None		
29942240	1	TP 03		0.50 - 0.50	Dark	Brown	Loamy S	and	Vegetation	S	Stones		
29942241	1	TP 05		0.50 - 0.50	Dark	Brown	Loamy S	Sand	Stones	Veç	getation		

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Superseded Report:

CERTIFICATE OF ANALYSIS

SDG: 240617-36 Client Ref.: 6301

Report Number: 732635 Location: Craddockstown, Naas

Results Legend # ISO17025 accredited. M mCERTS accredited. aq Aqueous / settled sample.	Cust	omer Sample Ref.	TP 01	TP 03	TP 05		
diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor repo	rt for	Depth (m) Sample Type Date Sampled	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S) -	0.50 - 0.50 Soil/Solid (S) -		
accreditation status. ** % recovery of the surrogate standard to che	eck the	Sample Time					
efficiency of the method. The results of indi compounds within samples aren't corrected	vidual I for the	Date Received SDG Ref	17/06/2024 240617-36	17/06/2024 240617-36	17/06/2024 240617-36		
recovery (F) Trigger breach confirmed	L	ab Sample No.(s)	29942239	29942240	29942241		
1-4+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference					
Moisture Content Ratio (% of as received sample)	%	PM024	11 §	15 §	13 §		
Loss on ignition	<0.7 %	TM018	1.41 § M	3.81 § M	4.13 § M		
Organic Carbon, Total	<0.2 %	TM132	0.232 § M	0.988	1.35		
pH	1 pH Units	TM133	8.72	8.63	8.7		
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	<0.6	<0.6		
PCB congener 28	<3 µg/kg	TM168	§ M	§ M	§ M		
PCB congener 52	<3 µg/kg	TM168	§ M	§ M	§ M		
PCB congener 101	<3 µg/kg	TM168	§ M	§ M	§ M		
PCB congener 118	<3 µg/kg	TM168	§ M	§ M	§ M		
PCB congener 138	<3 μg/kg	TM168	§ M	§ M	§ M		
PCB congener 153	<3 μg/kg	TM168	§ M	§ M	§ M		
PCB congener 180	<3 μg/kg	TM168	§ M	§ M	§ M		
Sum of detected PCB 7 Congeners	<21 μg/kg	TM168	\$ M	\$ M	\$ M		
			§	§	§		
Chromium, Trivalent	<0.9 mg/kg		7.27 §	15.2 §	10.9 §		
Antimony	<0.6 mg/kg		<0.6 §#	<0.6 §#	<0.6 §#		
Arsenic	<0.6 mg/kg	TM181	8.11 § M	14.7 § M	13.3 § M		
Barium	<0.6 mg/kg		39.9 §#	67.2 §#	65.4 §#		
Cadmium	<0.02 mg/kç	TM181	1.47 § M	2.36 § M	1.9 § M		
Chromium	<0.9 mg/kg	TM181	7.27 § M	15.2 § M	10.9 § M		
Copper	<1.4 mg/kg	TM181	14.5 § M	21.6 § M	18.5 § M		
Lead	<0.7 mg/kg	TM181	16.7 § M	31.4	31.5 § M		
Mercury	<0.1 mg/kg	TM181	<0.1 § M	<0.1 § M	<0.1 § M		
Molybdenum	<0.1 mg/kg	TM181	0.826 §#	1.17	1.52		
Nickel	<0.2 mg/kg	TM181	26 § M	42.4 § M	31.8 § M		
Selenium	<1 mg/kg	TM181	1.96	2.5	2.15		
Zinc	<1.9 mg/kg	TM181	92.1	\$# 144	§# 118		
PAH Total 17 (inc Coronene) Moisture Corrected	<10 mg/kg	TM410	\$ M	\$ M	\$ M		
Coronene	<200 µg/kg	TM410	<200 §	<200 §	<200 §		
Mineral Oil >C10-C40	<5 mg/kg	TM415	<5	<5	<5		
(EH_2D_AL)			§	§	§		

CERTIFICATE OF ANALYSIS

ALS

SDG: 240617-36 Client Ref.: 6301 Report Number: 732635 Location: Craddockstown, Naas

Superseded Report:

PAH by GCMS	0501			Location	raddekstown,	Ivaas	
Results Legend # ISO17025 accredited.	Cust	omer Sample Ref.	TP 01	TP 03	TP 05		
M mCERTS accredited. aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample.		Depth (m) Sample Type	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)		
Subcontracted - refer to subcontractor rep accreditation status. % recovery of the surrogate standard to ch		Date Sampled Sample Time	-	-	-		
efficiency of the method. The results of inc compounds within samples aren't correcte	lividual	Date Received	17/06/2024	17/06/2024	17/06/2024		
recovery (F) Trigger breach confirmed		SDG Ref ab Sample No.(s)	240617-36 29942239	240617-36 29942240	240617-36 29942241		
1-4+§@Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method					
Naphthalene	<9 µg/kg	TM218	<9	<9	<9		
			§ M	§ M	§ M		
Acenaphthylene	<12 µg/kg	TM218	<12 § M	<12 § M	<12 § M		
Acenaphthene	<8 µg/kg	TM218	<8 § M	<8 § M	<8 § M		
Fluorene	<10 µg/kg	TM218	<10 § M	<10 § M	<10 § M		
Phenanthrene	<15 µg/kg	TM218	<15 § M	<15 § M	34.3 § M		
Anthracene	<16 µg/kg	TM218	<16	<16 § M	<16 § M		
Fluoranthene	<17 µg/kg	TM218	\$ M	<17	127		
Pyrene	<15 µg/kg	TM218	§ M <15	§ M <15	§ M		
Benz(a)anthracene	<14 µg/kg	TM218	§ M <14	§ M <14	§ M 58.9		
			§ M	§ M	§ M		
Chrysene	<10 µg/kg	TM218	<10 § M	<10 § M	60 § M		
Benzo(b)fluoranthene	<15 µg/kg	TM218	<15 § M	<15 § M	73.7 § M		
Benzo(k)fluoranthene	<14 µg/kg	TM218	<14 § M	<14 § M	25.7 § M		
Benzo(a)pyrene	<15 µg/kg	TM218	<15 § M	<15 § M	55.4 § M		
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	<18 § M	<18 § M	38.2 § M		
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	<23 § M	<23 § M	<23 § M		
Benzo(g,h,i)perylene	<24 µg/kg	TM218	<24	<24	35.6		
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	<118	§ M	§ M		
			§	§	§		

CERTIFICATE OF ANALYSIS

SDG: 240617-36 Client Ref.: 6301

Superseded Report:

Report Number: 732635 Location: Craddockstown, Naas

TPH CWG (S)							
Results Legend # ISO17025 accredited. M mCERTS accredited.	Cust	tomer Sample Ref.	TP 01	TP 03	TP 05		
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample. * Subcontracted - refer to subcontractor repr	ort for	Depth (m) Sample Type Date Sampled	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)	0.50 - 0.50 Soil/Solid (S)		
accreditation status. ** % recovery of the surrogate standard to ch efficiency of the method. The results of ind compounds within samples aren't correcte	ividual	Sample Time Date Received	17/06/2024	17/06/2024	17/06/2024		
recovery (F) Trigger breach confirmed 1-4+§@ Sample deviation (see appendix)		SDG Ref ab Sample No.(s) AGS Reference	240617-36 29942239	240617-36 29942240	240617-36 29942241		
Component GRO Surrogate % recovery**	LOD/Units		105	103	102		
,			§	§	§		
Aliphatics >C5-C6 (HS_1D_AL)	<10 µg/kg	TM089	<10 §	<10 §	<10 §		
Aliphatics >C6-C8 (HS_1D_AL)	<10 µg/kg	TM089	<10 §	<10 §	<10 §		
Aliphatics >C8-C10 (HS_1D_AL)	<10 µg/kg	TM089	<10 §	<10 §	<10 §		
Aliphatics >C10-C12 (EH_2D_AL_#1)	<1000 µg/k	g TM414	<1000 §#	<1000 §#	<1000 §#		
Aliphatics >C12-C16 (EH_2D_AL_#1)	<1000 µg/k	g TM414	<1000 §#	<1000 §#	<1000 §#		
Aliphatics >C16-C21 (EH_2D_AL_#1)	<1000 µg/k	g TM414	<1000 §#	<1000 §#	<1000 §#		
Aliphatics >C21-C35 (EH_2D_AL_#1)	<1000 µg/k	g TM414	<1000 §#	<1000 §#	3510 §#		
Aliphatics >C35-C44 (EH_2D_AL_#1)	<1000 µg/k	g TM414	<1000 §	<1000 §	<1000 §		
Total Aliphatics >C10-C44 (EH_2D_AR_#1)	<5000 µg/k	g TM414	<5000 §	<5000 §	<5000 §		
Total Aliphatics & Aromatics >C10-C44 (EH_2D_Total_#1)	<10000 µg/kg	TM414	<10000 §	<10000 §	<10000 §		
Aromatics >EC5-EC7 (HS_1D_AR)	<10 µg/kg	TM089	<10 §	<10 §	<10 §		
Aromatics >EC7-EC8 (HS_1D_AR)	<10 µg/kg	TM089	<10 §	<10 §	<10 §		
Aromatics >EC8-EC10 (HS_1D_AR)	<10 µg/kg	TM089	<10 §	<10 §	<10 §		
Aromatics > EC10-EC12 (EH_2D_AR_#1)	<1000 µg/k	g TM414	<1000 §#	<1000 §#	<1000 §#		
Aromatics > EC12-EC16 (EH_2D_AR_#1)	<1000 µg/k	g TM414	<1000 §#	<1000 §#	<1000 §#		
Aromatics > EC16-EC21 (EH_2D_AR_#1)	<1000 µg/k	g TM414	<1000 §#	<1000	1030 §#		
Aromatics > EC21-EC35 (EH_2D_AR_#1)	<1000 µg/k	g TM414	<1000 §#	<1000	4130		
Aromatics >EC35-EC44 (EH_2D_AR_#1)	<1000 µg/k	g TM414	<1000 §	<1000 §	<1000 §		
Aromatics > EC40-EC44 (EH_2D_AR_#1)	<1000 µg/k	g TM414	<1000 §	<1000 §	<1000 §		
Total Aromatics > EC10-EC44 (EH_2D_AR_#1)	<5000 µg/k	g TM414	<5000 §	<5000 §	6250 §		
Total Aliphatics & Aromatics >C5-C44 (EH_2D_Total_#1+HS_1D_Total)	<10000 µg/kg	TM414	<10000 §	<10000 §	<10000 §		
GRO >C5-C6 (HS_1D)	<20 μg/kg	TM089	<20 §	<20 §	<20 §		
GRO >C6-C7 (HS_1D)	<20 µg/kg	TM089	<20 §	<20 §	<20 §		
GRO >C7-C8 (HS_1D)	<20 µg/kg	TM089	<20 §	<20 §	<20 §		
GRO >C8-C10 (HS_1D)	<20 µg/kg	TM089	<20 §	<20 §	<20 §		
GRO >C10-C12 (HS_1D)	<20 µg/kg	TM089	<20 §	<20 §	<20 §		
Total Aliphatics >C5-C10 (HS_1D_AL_TOTAL)	<50 µg/kg	TM089	<50 §	<50 §	<50 §		
Total Aromatics >EC5-EC10 (HS_1D_AR_TOTAL)	<50 µg/kg	TM089	<50 §	<50 §	<50 §		
GRO >C5-C10 (HS_1D_TOTAL)	<20 µg/kg	TM089	<20 §	<20 §	<20 §		
· ,			3	8	3		

SDG: 240617-36 Client Ref.: 6301

Report Number: 732635 Location: Craddockstown, Naas Superseded Report:

Client Ref.: 6301			Location: (Craddockstown,	Naas		
VOC MS (S) Results Legend	Cus	tomer Sample Ref.	TP 01	TP 03	TP 05		
# ISO17025 accredited. M mCERTS accredited.	020	tomor Gampio Hon	11 01	11 03	11 03		
aq Aqueous / settled sample.							
diss.filt Dissolved / filtered sample. tot.unfiltTotal / unfiltered sample.		Depth (m)	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50		
 Subcontracted - refer to subcontractor rep 	oort for	Sample Type Date Sampled	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)		
accreditation status. ** % recovery of the surrogate standard to c	heck the	Sample Time					
efficiency of the method. The results of in-	dividual	Date Received	17/06/2024	17/06/2024	17/06/2024		
compounds within samples aren't correcte recovery		SDG Ref	240617-36	240617-36	240617-36		
(F) Trigger breach confirmed	L	ab Sample No.(s) AGS Reference	29942239	29942240	29942241		
1-4+§@ Sample deviation (see appendix)	1.00//	AGS Reference					
Component	LOD/Units		440	40=	444		
Dibromofluoromethane**	%	TM116	149	107	111		
			§	§	§		
Toluene-d8**	%	TM116	99.8	86.3	96.4		
			§	§	§		
4-Bromofluorobenzene**	%	TM116	97.5	86.8	78.2		
	, ,		§	§	§		
Methyl Tertiary Butyl Ether	<0 E	TM116	<0.5	<0.5	<0.5		
Metry Tertiary Butyr Etrier	<0.5 µg/kg	TIVITIO					
			§ M	§ M	§ M		
Benzene	<1 µg/kg	TM116	<1	<1	<1		
			§ M	§ M	§ M		
Toluene	<1 µg/kg	TM116	<2	<1	<2.1		
I	1		§ M	§ M	§ M		
Ethylbenzene	<1 µg/kg	TM116	<1	<1	<1		
,,	· · µg/kg	10	§ M	§ M	§ M		
n/m Yulono	Z0/li	TN4440	<2	<2	<2		
p/m-Xylene	<2 µg/kg	TM116					
L			§#	§#	§#		
o-Xylene	<2 µg/kg	TM116	<2	<2	<2		
			§ M	§ M	§ M		
I							
	_	+					
	 	1					
	I						
	+	+					
		1					
	I						
	 						
	+	+					
	I						
	I						
	I						
	 	+					
	I						
	 	+					
	I						
		1					
	<u> </u>						

Hazardous

Waste Landfill

CERTIFICATE OF ANALYSIS

SDG: 240617-36 Client Ref.: 6301

Report Number: 732635

Superseded Report: Location: Craddockstown, Naas

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS **REF: BS EN 12457/2** Craddockstown, Naas **Client Reference Site Location** Mass Sample taken (kg) 0.100 **Natural Moisture Content (%)** 11.1 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 90 Particle Size <4mm >95%

ase	
SDG	240617-36
Lab Sample Number(s)	29942239
Sampled Date	
Customer Sample Ref.	TP 01
Depth (m)	0.50 - 0.50

Solid Waste Analysis	Result
Total Organic Carbon (%)	0.232
Loss on Ignition (%)	1.41
Sum of BTEX (mg/kg)	_
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg) (EH_2D_AL)	<5
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.72
ANC to pH 6 (mol/kg)	-
ANC to pH 4 (mol/kg)	-

Eluate Analysis	C ₂ Conc ⁿ in 1	C ₂ Conc ⁿ in 10:1 eluate (mg/l)		A ₂ 10:1 conc ⁿ leached (mg/kg)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 l/kg	
	Result	Limit of Detection	Result	Limit of Detection	J		
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	<0.0002	<0.0002	<0.002	<0.002	20	100	300
Cadmium	<0.00008	<0.00008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.00115	<0.0003	0.0115	<0.003	2	50	100
Mercury Dissolved (CVAF)	0.0000155	<0.00001	0.000155	<0.0001	0.01	0.2	2
Molybdenum	< 0.003	<0.003	< 0.03	<0.03	0.5	10	30
Nickel	0.000629	<0.0004	0.00629	<0.004	0.4	10	40
Lead	<0.0002	<0.0002	<0.002	<0.002	0.5	10	50
Antimony	<0.001	<0.001	<0.01	<0.01	0.06	0.7	5
Selenium	<0.001	<0.001	<0.01	<0.01	0.1	0.5	7
Zinc	0.00156	<0.001	0.0156	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	49.2	<10	492	<100	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	3.16	<3	31.6	<30	500	800	1000

Leach Test Information

Date Prepared	18-Jun-2024
pH (pH Units)	8.88
Conductivity (µS/cm)	64
Volume Leachant (Litres)	0.890

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

24/06/2024 15:01:04

SDG: 240617-36 Client Ref.: 6301

Report Number: 732635

Superseded Report: Location: Craddockstown Naas

800

10

1000

4000

1

500

<20

<5

<20

<100

<0.16

<30

15000

150

20000

60000

800

25000

50000

100000

1000

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS **REF: BS EN 12457/2 Client Reference** Site Location Craddockstown, Naas Mass Sample taken (kg) 0.101 **Natural Moisture Content (%)** 12.6 Mass of dry sample (kg) 0.090 **Dry Matter Content (%)** 88.88 Particle Size <4mm >95% Case **Landfill Waste Acceptance Criteria Limits** SDG 240617-36 Lab Sample Number(s) 29942240 Stable **Sampled Date** Non-reactive **Inert Waste** Hazardous **Customer Sample Ref.** TP 03 Hazardous Waste Landfill Waste Landfill in Non-0.50 - 0.50Depth (m) Hazardous Landfill Result Solid Waste Analysis 0.988 3 5 Total Organic Carbon (%) Loss on Ignition (%) 3.81 10 Sum of BTEX (mg/kg) Sum of 7 PCBs (mg/kg) <0.021 Mineral Oil (mg/kg) (EH_2D_AL) <5 500 PAH Sum of 17 (mg/kg) <10 100 pH (pH Units) 8.63 >6 ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) C₂ Concⁿ in 10:1 eluate (mg/l) A_2 10:1 concⁿ leached (mg/kg) Limit values for compliance leaching test **Eluate Analysis** using BS EN 12457-3 at L/S 10 I/kg **Limit of Detection Limit of Detection** Result Result Arsenic 0.5 25 < 0.0005 < 0.0005 < 0.005 < 0.005 Barium <0.0002 <0.0002 <0.002 < 0.002 20 100 300 Cadmium <0.00008 <0.00008 <0.0008 <0.0008 0.04 Chromium < 0.001 <0.001 < 0.01 <0.01 0.5 10 Copper 0.000991 < 0.0003 0.00991 < 0.003 2 50 100 Mercury Dissolved (CVAF) 0.01 0.2 < 0.00001 < 0.00001 < 0.0001 <0.0001 0.5 Molybdenum < 0.003 < 0.003 < 0.03 < 0.03 10 30 Nickel 0.000671 < 0.0004 0.00671 < 0.004 0.4 10 40 <0.0002 <0.0002 <0.002 <0.002 0.5 10 50 Lead 0.06 5 Antimony < 0.001 < 0.001 <0.01 < 0.01 0.7 Selenium <0.001 <0.001 0.1 0.5 <0.01 <0.01 Zinc 0.00107 <0.001 0.0107 <0.01 4 50 200

Leach Test Information

Date Prepared	18-Jun-2024
pH (pH Units)	8.77
Conductivity (µS/cm)	82
Volume Leachant (Litres)	0.889

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

<2

<0.5

<2

63

<0.016

3.51

<2

<0.5

<2

<10

<0.016

<3

<20

<5

<20

630

< 0.16

35.1

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

24/06/2024 15:01:04

Chloride

Fluoride

Sulphate (soluble)

Total Dissolved Solids

Total Monohydric Phenols (W)

Dissolved Organic Carbon

SDG: 240617-36 Client Ref.: 6301 Report Number: 732635

732635 Superseded Report:

Location: Craddockstown, Naas

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RE	SULTS					REF: BS E	N 12457/
Client Reference			Site Location	1	Crad	dockstown, Na	aas
Mass Sample taken (kg)	0.105			ture Content (%		,	
Mass of dry sample (kg)	0.090		Dry Matter Co		86.4		
Particle Size <4mm	>95%	_	Dry Matter O	ontent (70)	00.4		
Farticle Size \4iiiii	79370						
Case						II Waste Acce	
SDG	240617-36					Criteria Limit	S
Lab Sample Number(s)	29942241						
Sampled Date						Stable	
Customer Sample Ref.	TP 05				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	0.50 - 0.50				Landfill	in Non-	Waste Landfi
Deptii (iii)	0.30 - 0.30					Hazardous Landfill	
Solid Waste Analysis	Result						
Total Organic Carbon (%)	1.35				3	5	6
Loss on Ignition (%)	4.13				-	-	10
Sum of BTEX (mg/kg)	-0.004				-		-
Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg) (EH 2D AL)	<0.021 <5				1 500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
(3 3)					-	>6	-
pH (pH Units)	8.7						
pH (pH Units) ANC to pH 6 (mol/kg)	-				-	-	-
,					-		-
ANC to pH 6 (mol/kg)	-	0:1 eluate (mg/l)		ⁿ leached (mg/kg)	- Limit value	-	eaching test
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis	C ₂ Conc ⁿ in 1	Limit of Detection	Result	Limit of Detection	Limit value using BS	- - s for compliance lo S EN 12457-3 at L/	eaching test /S 10 l/kg
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic	C ₂ Conc ⁿ in 1 Result 0.00061	Limit of Detection <0.0005	Result 0.0061	Limit of Detection <0.005	Limit value using BS	- - s for compliance lo S EN 12457-3 at L/ 2	eaching test 'S 10 I/kg
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium	C ₂ Conc ⁿ in 1 Result 0.00061 <0.0002	Limit of Detection <0.0005 <0.0002	Result 0.0061 <0.002	Limit of Detection <0.005 <0.002	Limit value using BS	- - s for compliance lo S EN 12457-3 at L/ 2 100	eaching test /S 10 l/kg
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.00008	Limit of Detection <0.0005 <0.0002 <0.00008	Result 0.0061 <0.002 <0.0008	Limit of Detection <0.005 <0.002 <0.0008	Limit value using BS 0.5 20 0.04	- - s for compliance lose EN 12457-3 at L/ 2 100	eaching test /S 10 l/kg 25 300 5
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.00008 <0.0001	Limit of Detection <0.0005 <0.0002 <0.0008 <0.001	Result 0.0061 <0.002 <0.0008 <0.01	Limit of Detection <0.005 <0.002 <0.0008 <0.01	- Limit value using BS 0.5 20 0.04 0.5	- - s for compliance lose EN 12457-3 at L/ 2 100 1	25 300 5
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154	 Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003 	0.5 20 0.04 0.5	- - s for compliance lose EN 12457-3 at L/ 2 100 1 10 50	25 300 5 70
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF)	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154 <0.00001	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001	 Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003 <0.0001 	0.5 20 0.04 0.5 2		25 300 5 70 100 2
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154 <0.00001 <0.0003	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03	 Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003 <0.0001 <0.03 	0.5 20 0.04 0.5 2 0.01		eaching test /S 10 l/kg 25 300 5 70 100 2 30
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.00008 <0.001 0.00154 <0.00001 <0.003 0.00066	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066	 Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003 <0.0001 <0.03 <0.004 	0.5 20 0.04 0.5 2 0.01 0.5		eaching test /S 10 l/kg 25 300 5 70 100 2 30 40
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.00008 <0.001 0.00154 <0.00001 <0.003 0.00066 <0.0002	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002	 Limit of Detection <0.005 <0.002 <0.0008 <0.01 <0.003 <0.0001 <0.03 <0.004 <0.002 	0.5 20 0.04 0.5 2 0.01 0.5 0.4		eaching test /S 10 l/kg 25 300 5 70 100 2 30 40
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.00008 <0.001 0.00154 <0.00001 <0.003 0.00066 <0.0002 <0.0001	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002 <0.01	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5		eaching test /S 10 l/kg 25 300 5 70 100 2 30 40 50 5
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154 <0.00001 <0.003 0.00066 <0.0002 <0.0001 <0.0001	Color Colo	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002 <0.01 <0.01	Limit of Detection	- Limit value using BS 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1		- eaching test /S 10 l/kg 25 300 5 70 100 2 30 40 50 5
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154 <0.00001 <0.003 0.00066 <0.0002 <0.0001 0.000204	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002 <0.01 0.0204	Limit of Detection	- Limit value using BS 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1		- eaching test /S 10 I/kg 25 300 5 70 100 2 30 40 50 5 7 200
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154 <0.00001 <0.003 0.00066 <0.0002 <0.001 0.00024 <2	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002 <0.01 0.0204 <20	Limit of Detection	- Limit value using BS 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800		25 300 5 70 100 2 30 40 50 5 7 200 25000
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154 <0.00001 <0.003 0.00066 <0.0002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.005	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002 <0.01 0.0204 <200 <5	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06 0.1 4		25 300 5 70 100 2 30 40 50 5 7 200 25000 500
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble)	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154 <0.00001 <0.003 0.00066 <0.0002 <0.001 0.00204 <2 <0.5 <2	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002 <0.01 <0.01 <0.02 <5.01 <5.02 <5.02	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10		eaching test /S 10 I/kg 25 300 5 70 100 2 30 40 50 5 7 200 25000 50000
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis Arsenic Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble) Total Dissolved Solids	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.00008 <0.001 0.00154 <0.00001 <0.0003 0.00066 <0.0002 <0.0001 <0.0001 <0.001 <0.001 <0.005 <2 <0.5 <2 70.1	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002 <0.01 <0.01 <0.01 <0.01	Limit of Detection	- Limit value using BS 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000 4000		25 300 5 70 100 2 30 40 50 7 200 25000 500
ANC to pH 6 (mol/kg) ANC to pH 4 (mol/kg) Eluate Analysis	C2 Conc ⁿ in 1 Result 0.00061 <0.0002 <0.0008 <0.001 0.00154 <0.00001 <0.003 0.00066 <0.0002 <0.001 0.00204 <2 <0.5 <2	Limit of Detection	Result 0.0061 <0.002 <0.0008 <0.01 0.0154 <0.0001 <0.03 0.0066 <0.002 <0.01 <0.01 <0.02 <5.01 <5.02 <5.02	Limit of Detection	0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10		eaching test /S 10 I/kg 25 300 5 70 100 2 30 40 50 5 7 200 25000 50000

Leach Test Information

Date Prepared	18-Jun-2024
pH (pH Units)	8.67
Conductivity (µS/cm)	92
Volume Leachant (Litres)	0.885

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable

Leachates prepared in accordance with BS EN 12457 will be carried out at room temperature (20±5°C)

Stated limits are for guidance only and ALS Laboratories (UK) Limited cannot be held responsible for any discrepancies with current legislation

24/06/2024 15:01:04

SDG: 240617-36 Client Ref.: 6301

Report Number: 732635 Location: Craddockstown, Naas

Superseded Report:

Table of Results - Appendix

Method No	Description
TM104	Determination of Fluoride using the Kone Analyser
TM183	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM414	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID
PM024	Soil preparation including homogenisation, moisture, screens of soils for Asbestos Containing Material
PM115	Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	Determination of Loss on Ignition
TM090	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM116	Determination of Volatile Organic Compounds by Headspace / GC-MS
TM132	ELTRA CS800 Operators Guide
TM133	Determination of pH in Soil and Water using the GLpH pH Meter
TM259	Determination of Phenols in Waters and Leachates by HPLC
TM410	Determination of Coronene in soils by GCMS
TM089	Determination of Gasoline Range Hydrocarbons (GRO) by Headspace GC-FID (C4-C12)
TM151	Determination of Hexavalent Chromium using Kone analyser
TM181	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM152	Analysis of Aqueous Samples by ICP-MS
TM168	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM218	The determination of PAH in soil samples by GC-MS
TM256	Determination of pH, EC, TDS and Alkalinity in Aqueous samples
TM415	Determination of Extractable Petroleum Hydrocarbons in Soils by GCxGC-FID

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Laboratories (UK) Limited Hawarden (Method codes TM).

Validated

CERTIFICATE OF ANALYSIS

SDG: 240617-36 Client Ref.: 6301 Report Number: 732635 Location: Craddockstown, Naas

Superseded Report:

Test Completion Dates

		1631	Com
Lab Sample No(s)	29942239	29942240	29942241
Customer Sample Ref.	TP 01	TP 03	TP 05
AGS Ref.			
Depth	0.50 - 0.50	0.50 - 0.50	0.50 - 0.50
Туре	Soil/Solid (S)	Soil/Solid (S)	Soil/Solid (S)
Anions by Kone (w)	24-Jun-2024	24-Jun-2024	24-Jun-2024
CEN 10:1 Leachate (1 Stage)	19-Jun-2024	19-Jun-2024	19-Jun-2024
CEN Readings	21-Jun-2024	21-Jun-2024	21-Jun-2024
Chromium III	21-Jun-2024	20-Jun-2024	21-Jun-2024
Coronene	21-Jun-2024	21-Jun-2024	21-Jun-2024
Dissolved Metals by ICP-MS	21-Jun-2024	21-Jun-2024	21-Jun-2024
Dissolved Organic/Inorganic Carbon	21-Jun-2024	21-Jun-2024	21-Jun-2024
EPH by GCxGC-FID	20-Jun-2024	20-Jun-2024	20-Jun-2024
EPH CWG GC (S)	20-Jun-2024	20-Jun-2024	20-Jun-2024
Fluoride	20-Jun-2024	20-Jun-2024	20-Jun-2024
GRO by GC-FID (S)	20-Jun-2024	20-Jun-2024	20-Jun-2024
Hexavalent Chromium (s)	19-Jun-2024	19-Jun-2024	19-Jun-2024
Loss on Ignition in soils	20-Jun-2024	20-Jun-2024	20-Jun-2024
Mercury Dissolved	24-Jun-2024	24-Jun-2024	24-Jun-2024
Metals in solid samples by OES	21-Jun-2024	20-Jun-2024	20-Jun-2024
Moisture at 105C	18-Jun-2024	18-Jun-2024	18-Jun-2024
PAH 16 & 17 Calc	21-Jun-2024	21-Jun-2024	21-Jun-2024
PAH by GCMS	21-Jun-2024	21-Jun-2024	21-Jun-2024
PCBs by GCMS	21-Jun-2024	21-Jun-2024	21-Jun-2024
pH	20-Jun-2024	20-Jun-2024	20-Jun-2024
pH Value of Filtered Water	21-Jun-2024	21-Jun-2024	21-Jun-2024
Phenols by HPLC (W)	21-Jun-2024	21-Jun-2024	21-Jun-2024
Sample description	18-Jun-2024	18-Jun-2024	18-Jun-2024
Total Organic Carbon	21-Jun-2024	24-Jun-2024	24-Jun-2024
TPH CWG GC (S)	20-Jun-2024	20-Jun-2024	20-Jun-2024
VOC MS (S)	20-Jun-2024	21-Jun-2024	20-Jun-2024

SDG: 240617-36 Report Number: 732635 Superseded Report: Client Ref: 6301 Location: Craddockstown, Naas

Appendix General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

- 2. If sufficient sample is received a sub sample will be retained free of charge for 15 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of 15 days after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. **Tentatively Identified Compounds (TICs)** are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of

19. Sample Deviations

UKAS accreditation and are not moisture corrected.

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2021), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials and soils are obtained from supplied bulk materials andd soils which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2021).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name
Chrysof le	White Asbests
Amosite	Brow nAsbests
Cro d dolite	Blue Asbe stos
Fibrous Act nolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremol ite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 5 Waste Classification Report

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

9ZSIL-ZFKYX-G8GI

Job name

6301

Description/Comments

Client: Kildare County Council Engineer: Hayes Higgins Partnership

Project

Craddockstown

Site

Naas, Co. Kildare

Classified by

Name: Company:

Stephen Letch Site Investigations Ltd

Date: The Grange 30 Jul 2024 12:50 GMT 12th Lock Road

Telephone: Lucan K78 F598

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED

Date

Course

Hazardous Waste Classification 09 Oct 2019 Most recent 3 year Refresher 04 Oct 2022

Next 3 year Refresher due by Oct 2025

Purpose of classification

2 - Material Characterisation

Address of the waste

Craddockstown, Naas, Co. Kildare

Post Code N/A

SIC for the process giving rise to the waste

43130 Test drilling and boring

Description of industry/producer giving rise to the waste

Site Investigation

Description of the specific process, sub-process and/or activity that created the waste

Soils recovered for environmental testing

Description of the waste

Natural soils

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	WAC I	Results	- Page
#	Sample name	Deptil [iii]	Classification (Cesuit	riazaru properties	Inert	Non Haz	- raye
1	TP01-0.50	0.50	Non Hazardous		Pass	Pass	3
2	TP03-0.50	0.50	Non Hazardous		Pass	Pass	7
3	TP05-0.50	0.50	Non Hazardous		Pass	Pass	11

Related documents

#	Name	Description
1	240617-36.hwol	ALS Hawarden .hwol file used to populate the Job
2	Rilta Suite NEW	waste stream template used to create this Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Report Created by: Stephen Letch Created date: 30 Jul 2024 12:50 GMT Appendices Appendix A: Classifier defined and non EU CLP determinands 15 Appendix B: Rationale for selection of metal species 16 Appendix C: Version 17

Page 2 of 18 9ZSIL-ZFKYX-G8GLA www.hazwasteonline.com

Classification of sample: TP01-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code:
TP01-0.50 Chapter:
Sample Depth:
0.50 m Entry:

from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Moisture content: 11%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group	-	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
2	9	confirm TPH has NOT arisen from diesel or petrol		Ø							
3	4	antimony { antimony trioxide } 051-005-00-X		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic pentoxide } 033-004-00-6		8.11	mg/kg	1.534	11.071	mg/kg	0.00111 %	✓	
5	4	barium {		39.9	mg/kg	1.233	43.803	mg/kg	0.00438 %	✓	
6	4	cadmium { cadmium sulfate } 048-009-00-9 233-331-6 10124-36-4	+	1.47	mg/kg	1.855	2.426	mg/kg	0.000243 %	✓	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		14.5	mg/kg	1.126	14.53	mg/kg	0.00145 %	✓	
8	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	16.7	mg/kg		14.863	mg/kg	0.00149 %	✓	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4	molybdenum { molybdenum(VI) oxide } 042-001-00-9		0.826	mg/kg	1.5	1.103	mg/kg	0.00011 %	✓	
11	4	nickel { nickel sulfate } 232-104-9 7786-81-4		26	mg/kg	2.637	61.013	mg/kg	0.0061 %	✓	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		1.96	mg/kg	1.405	2.451	mg/kg	0.000245 %	✓	
13		034-002-00-8 zinc { zinc sulphate }		92.1	mg/kg	2.469	202.406	mg/kg	0.0202 %	✓	
14	4			7.27	mg/kg	1.462	9.457	mg/kg	0.000946 %	✓	

					T								
#			Determinand		Note	User entered dat	a	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			T doto!				MC	
15	4	chromium in chromoxide }				<0.6 mg/	/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
			215-607-8	1333-82-0	\vdash							Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.009 mg/	/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	0	acenaphthylene	202-049-3	51-20-3	\vdash							Н	
17		. ,	205-917-1	208-96-8		<0.012 mg/	/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/	/kg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01 mg/	/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	201-581-5	85-01-8	T	<0.015 mg/	/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/	/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	204-37 1-1	120-12-7	H	<0.017 mg/	/ka		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
	_	pyrene	205-912-4	206-44-0	-		9			9,9		H	
23	0		204-927-3	129-00-0		<0.015 mg/	/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.014 mg/	/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01 mg/	/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.015 mg/	/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei		207-08-9		<0.014 mg/	/kg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
		benzo[a]pyrene; be		201-00-9	+							Н	
28			200-028-5	50-32-8		<0.015 mg/	/kg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
29	0	indeno[123-cd]pyre				<0.018 mg/	/kg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
			205-893-2	193-39-5								Н	
30		dibenz[a,h]anthrace 601-041-00-2	ene 200-181-8	53-70-3		<0.023 mg/	/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene		404.04.0		<0.024 mg/	/kg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
-			205-883-8	191-24-2	-							Н	
32	Θ	polychlorobiphenyl: 602-039-00-4	s, РСБ 215-648-1	1336-36-3	-	<0.021 mg/	/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE;	1000-00-0		<0.0005 mg/	/ka		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	1		_			J. 3			
34		benzene	000 750 7	71.40.0		<0.001 mg/	/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		601-020-00-8 toluene	200-753-7	71-43-2		<0.002 mg/	/ka		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
	_	601-021-00-3 ethylbenzene	203-625-9	108-88-3	1		ng			mg/kg			
36	0		202-849-4	100-41-4		<0.001 mg/	/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene	205-881-7	191-07-1		<0.2 mg/	/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	pH		PH		8.72 pH			8.72	рН	8.72 pH		
-		o valono: [41 m xiii]-	no: [2] m valens: [1	\vdash							Н	
39			202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/	/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
	215-535-7 [4] 1330-20-7 [4]						Total:	0.0376 %	H				
										.o.u.	0.00.070		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP01-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.232	3	5
2	LOI (loss on ignition)	%	1.41	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.008	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.72	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	<0.002	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0115	2	50
14	mercury	mg/kg	0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0062	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0156	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	31.6	500	800
26	TDS (total dissolved solids)	mg/kg	492	4,000	60,000

Key

User supplied data

Classification of sample: TP03-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP03-0.50 Chapter: Sample Depth: 0.50 m Entry:

from contaminated sites)

Moisture content:

15%

(wet weight correction)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has N	OT arisen from di	esel or petrol		✓							
3	-	antimony { <mark>antimon</mark> 051-005-00-X	py trioxide } 215-175-0	1309-64-4		<0.6	mg/kg	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	_	arsenic { <mark>arsenic pe</mark> 033-004-00-6	entoxide } 215-116-9	1303-28-2		14.7	mg/kg	1.534	19.166	mg/kg	0.00192 %	✓	
5		barium { • barium	sulphide }	21109-95-5		67.2	mg/kg	1.233	70.457	mg/kg	0.00705 %	✓	
6	_	cadmium { <mark>cadmiur</mark> 048-009-00-9	m sulfate }	10124-36-4		2.36	mg/kg	1.855	3.72	mg/kg	0.000372 %	✓	
7	_	copper {	oxide; copper (I) o 215-270-7	xide } 1317-39-1		21.6	mg/kg	1.126	20.671	mg/kg	0.00207 %	✓	
8		lead { lead compospecified elsewhere			1	31.4	mg/kg		26.69	mg/kg	0.00267 %	✓	
9	4	mercury { mercury	dichloride }	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10		molybdenum { moly	ybdenum(VI) oxid	e } 1313-27-5		1.17	mg/kg	1.5	1.492	mg/kg	0.000149 %	✓	
11	4	nickel { <mark>nickel sulfa</mark> 028-009-00-5	te } 232-104-9	7786-81-4		42.4	mg/kg	2.637	95.026	mg/kg	0.0095 %	✓	
12		selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	lenide and those			2.5	mg/kg	1.405	2.986	mg/kg	0.000299 %	√	
13	æ.	zinc { <mark>zinc sulphate</mark> 030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		144	mg/kg	2.469	302.242	mg/kg	0.0302 %	✓	
14	4	chromium in chrom		ds {		15.2	mg/kg	1.462	18.883	mg/kg	0.00189 %	✓	

	$\overline{}$				T								
#			Determinand		Note	User entered data	a	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			1 doto:				MC	
15	æ	chromium in chromoxide }				<0.6 mg/k	кg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		}	215-607-8	1333-82-0	\vdash							Н	
16		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.009 mg/k	κg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
	0	acenaphthylene	202-0-5-0	p1-20-0								Н	
17	Ĭ	. ,	205-917-1	208-96-8	1	<0.012 mg/k	kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene	201-469-6	83-32-9		<0.008 mg/k	кg		<0.008	mg/kg	<0.0000008 %		<lod< td=""></lod<>
19	0	fluorene	201-695-5	86-73-7		<0.01 mg/k	кg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	phenanthrene	201-581-5	85-01-8		<0.015 mg/k	кg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
21	0	anthracene	204-371-1	120-12-7		<0.016 mg/k	кg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	204-37 1-1	120-12-7		<0.017 mg/k	(0		<0.017	mg/kg	<0.0000017 %		<lod< td=""></lod<>
			205-912-4	206-44-0			' 9			ilig/kg	40.0000017 70	Ш	LOD
23	0	pyrene	204-927-3	129-00-0	L	<0.015 mg/k	κg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
24		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.014 mg/k	кg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
25		chrysene 601-048-00-0	205-923-4	218-01-9		<0.01 mg/k	кg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.015 mg/k	κg		<0.015	mg/kg	<0.0000015 %		<lod< td=""></lod<>
27		benzo[k]fluoranthei		207-08-9		<0.014 mg/k	кg		<0.014	mg/kg	<0.0000014 %		<lod< td=""></lod<>
28		benzo[a]pyrene; be				10.045			-0.045		<0.0000015 %	П	<lod< td=""></lod<>
20			200-028-5	50-32-8		<0.015 mg/k	\g		<0.015	mg/kg	<0.0000015 %		\LUD
29	0	indeno[123-cd]pyre	ene 205-893-2	402.20.5		<0.018 mg/k	κg		<0.018	mg/kg	<0.0000018 %		<lod< td=""></lod<>
30		dibenz[a,h]anthrace		193-39-5 53-70-3		<0.023 mg/k	кg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
31	0	benzo[ghi]perylene)	J.		<0.024 mg/k	κg		<0.024	mg/kg	<0.0000024 %		<lod< td=""></lod<>
	0	polychlorobiphenyl	205-883-8 s: PCB	191-24-2								Н	
32		· · · · · · · · · · · · · · · · · · ·	215-648-1	1336-36-3	-	<0.021 mg/k	κg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
33		tert-butyl methyl etl 2-methoxy-2-methy	/lpropane	1		<0.0005 mg/k	кg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
_			216-653-1	1634-04-4	-							Н	
34		benzene 601-020-00-8	200-753-7	71-43-2		<0.001 mg/k	κg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
35		toluene 601-021-00-3	203-625-9	108-88-3		<0.001 mg/k	κg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
36	0	ethylbenzene	202-849-4	100-41-4		<0.001 mg/k	кg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene	205-881-7	191-07-1	_	<0.2 mg/k	кg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	9	pH	<u> </u>			8.63 pH			8.63	рН	8.63 pH		
_		e vademes [41 = - 1	no. [0] m :::-! [PH	\vdash							Н	
39			202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		<0.004 mg/k	кg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
_	215-535-7 [4] 1330-20-7 [4]						Total:	0.0574 %	H				
										.o.ui.	L		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

₫ <LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP03-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	0.988	3	5
2	LOI (loss on ignition)	%	3.81	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.007	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.63	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	<0.005	0.5	2
10	barium	mg/kg	<0.002	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0099	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0067	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0107	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	35.1	500	800
26	TDS (total dissolved solids)	mg/kg	630	4,000	60,000

Key

User supplied data

Page 10 of 18 9ZSIL-ZFKYX-G8GLA www.hazwasteonline.com

Classification of sample: TP05-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP05-0.50 Chapter: Sample Depth: 0.50 m Entry:

Moisture content:

13%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data		Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) petroleum group		<10 mg/k	g		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
2	0	confirm TPH has NOT arisen from diesel or petrol		✓							
3	4	antimony { antimony trioxide } 051-005-00-X		<0.6 mg/k	g 1	1.197	<0.718	mg/kg	<0.0000718 %		<lod< td=""></lod<>
4	4	arsenic { arsenic pentoxide } 033-004-00-6		13.3 mg/k	g 1	1.534	17.748	mg/kg	0.00177 %	✓	
5		barium {		65.4 mg/k	g 1	1.233	70.183	mg/kg	0.00702 %	√	
6	-			1.9 mg/k	g 1	1.855	3.066	mg/kg	0.000307 %	√	
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X		18.5 mg/k	g 1	1.126	18.121	mg/kg	0.00181 %	✓	
8	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	31.5 mg/k	g		27.405	mg/kg	0.00274 %	√	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/k	g 1	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	_	molybdenum { molybdenum(VI) oxide } 042-001-00-9		1.52 mg/k	g	1.5	1.984	mg/kg	0.000198 %	✓	
11	4	nickel { nickel sulfate } 028-009-00-5 232-104-9 7786-81-4		31.8 mg/k	g 2	2.637	72.947	mg/kg	0.00729 %	✓	
12		selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		2.15 mg/k	(g 1	1.405	2.628	mg/kg	0.000263 %	✓	
13	æ			118 mg/k	kg 2	2.469	253.498	mg/kg	0.0253 %	√	
14	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		10.9 mg/k	ıg 1	1.462	13.86	mg/kg	0.00139 %	√	

_	_				_			1 1				_	
#		EII 01 B : 1	Determinand	0404	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
15	4	chromium in chromoxide }	. , , .			<0.6	mg/kg	1.923	<1.154	mg/kg	<0.000115 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
16		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.009	mg/kg		<0.009	mg/kg	<0.0000009 %		<lod< td=""></lod<>
17	0	acenaphthylene	205-917-1	208-96-8		<0.012	mg/kg		<0.012	mg/kg	<0.0000012 %		<lod< td=""></lod<>
18	0	acenaphthene				<0.008	mg/kg		<0.008	mg/kg	<0.000008 %		<lod< td=""></lod<>
19	0	fluorene	201-469-6	83-32-9		<0.01	mg/kg		<0.01	malka	<0.000001 %		<lod< td=""></lod<>
19			201-695-5	86-73-7		~0.01	ilig/kg		\0.01	mg/kg	<0.000001 78		\LOD
20	0	phenanthrene				0.0343	mg/kg		0.0298	mg/kg	0.00000298 %	✓	
			201-581-5	85-01-8		0.0010			0.0200	mg/ng	0.00000200 70	٧	
21	0	anthracene	204-371-1	120-12-7		<0.016	mg/kg		<0.016	mg/kg	<0.0000016 %		<lod< td=""></lod<>
22	0	fluoranthene	205-912-4	206-44-0		0.127	mg/kg		0.11	mg/kg	0.000011 %	√	
23	0	pyrene				0.112	mg/kg		0.0974	mg/kg	0.00000974 %	√	
		hanza[a]anthraaan	204-927-3	129-00-0	\vdash								
24		benzo[a]anthracen 601-033-00-9	200-280-6	56-55-3		0.0589	mg/kg		0.0512	mg/kg	0.00000512 %	✓	
25		chrysene 601-048-00-0	205-923-4	218-01-9		0.06	mg/kg		0.0522	mg/kg	0.00000522 %	✓	
26		benzo[b]fluoranthe			T	0.0737	mg/kg		0.0641	mg/kg	0.00000641 %	√	
20		601-034-00-4	205-911-9	205-99-2		0.0737	ilig/kg		0.0041	ilig/kg	0.00000041 70	٧	
27		benzo[k]fluoranthe				0.0257	mg/kg		0.0224	mg/kg	0.00000224 %	√	
		601-036-00-5	205-916-6	207-08-9								_	
28		benzo[a]pyrene; be		5000		0.0554	mg/kg		0.0482	mg/kg	0.00000482 %	✓	
		601-032-00-3 indeno[123-cd]pyre	200-028-5	50-32-8									
29	0		205-893-2	193-39-5	-	0.0382	mg/kg		0.0332	mg/kg	0.00000332 %	✓	
30		dibenz[a,h]anthrac	ene			<0.023	mg/kg		<0.023	mg/kg	<0.0000023 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3									
31	0	benzo[ghi]perylene				0.0356	mg/kg		0.031	mg/kg	0.0000031 %	✓	
			205-883-8	191-24-2									
32	Θ	polychlorobiphenyl		4000 00 0		<0.021	mg/kg		<0.021	mg/kg	<0.0000021 %		<lod< td=""></lod<>
		602-039-00-4 tert-butyl methyl et	215-648-1 her: MTRE:	1336-36-3	\vdash								
33		2-methoxy-2-methy	ylpropane	4624 04 4		<0.0005	mg/kg		<0.0005	mg/kg	<0.00000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	\vdash							\vdash	
34		benzene 601-020-00-8	200-753-7	71-43-2	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
25		toluene		. 1 10 2	\vdash	10.0001	ma c: //		-0.0001	ma =: //	<0.0000004.00	Н	-1.05
35		601-021-00-3	203-625-9	108-88-3		<0.0021	mg/kg		<0.0021	mg/kg	<0.00000021 %		<lod< td=""></lod<>
36	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
37	0	coronene	205-881-7	191-07-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38	0	pН				8.7	pН		8.7	рН	8.7 pH		
			ro1 : -	PH	\vdash								
39		o-xylene; [1] p-xyle 601-022-00-9	ene; [2] m-xylene; [3] 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.004	mg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
		<u> </u>	<u>~ 10-000-7 [4]</u>	1000-20-1 [4]						Total:	0.0494 %	Н	
								-					

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

₫ <LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

WAC results for sample: TP05-0.50

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland"
The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	1.35	3	5
2	LOI (loss on ignition)	%	4.13	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.0081	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.021	1	-
5	Mineral oil (C10 to C40)	mg/kg	<5	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<10	100	-
7	рН	рН	8.7	-	>6
8	ANC (acid neutralisation capacity)	mol/kg		-	-
	Eluate Analysis 10:1	,			
9	arsenic	mg/kg	0.0061	0.5	2
10	barium	mg/kg	<0.002	20	100
11	cadmium	mg/kg	<0.0008	0.04	1
12	chromium	mg/kg	<0.01	0.5	10
13	copper	mg/kg	0.0154	2	50
14	mercury	mg/kg	<0.0001	0.01	0.2
15	molybdenum	mg/kg	<0.03	0.5	10
16	nickel	mg/kg	0.0066	0.4	10
17	lead	mg/kg	<0.002	0.5	10
18	antimony	mg/kg	<0.01	0.06	0.7
19	selenium	mg/kg	<0.01	0.1	0.5
20	zinc	mg/kg	0.0204	4	50
21	chloride	mg/kg	<20	800	15,000
22	fluoride	mg/kg	<5	10	150
23	sulphate	mg/kg	<20	1,000	20,000
24	phenol index	mg/kg	<0.16	1	-
25	DOC (dissolved organic carbon)	mg/kg	33.7	500	800
26	TDS (total dissolved solids)	mg/kg	701	4,000	60,000

Key

User supplied data

Page 14 of 18 9ZSIL-ZFKYX-G8GLA www.hazwasteonline.com

Appendix A: Classifier defined and non EU CLP determinands

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350

(HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)

EU CLP index number: 016-002-00-X

Description/Comments:

Additional Hazard Statement(s): EUH031 >= 0.8 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH031 >= 0.8 % hazard statement sourced from: WM3, Table C12.2

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

EU CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

EU CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

[®] coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

pH (CAS Number: PH)

Description/Comments: Appendix C4
Data source: WM3 1st Edition 2015
Data source date: 25 May 2015
Hazard Statements: None.

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case scenario.

arsenic {arsenic pentoxide}

Arsenic pentoxide used as most hazardous species.

Page 16 of 18 9ZSIL-ZFKYX-G8GLA www.hazwasteonline.com

barium {barium sulphide}

Chromium VI at limits of detection. Barium sulphide used as the next most hazardous species. No chromate present.

cadmium {cadmium sulfate}

Cadmium sulphate used as the most hazardous species.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead (lead compounds with the exception of those specified elsewhere in this Annex (worst case))

Chromium VI at limits of detection. Lead compounds used as the next most hazardous species. No chromate present.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight.

nickel {nickel sulfate}

Chromium VI at limits of detection. Nickel sulphate used as the next most hazardous species. No chromate present.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc sulphate}

Chromium VI at limits of detection. Zinc sulphate used as the next most hazardous species. No chromate present.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1.NI - Jan 2021
HazWasteOnline Classification Engine Version: 2024.158.6092.11254 (06 Jun 2024)
HazWasteOnline Database: 2024.158.6092.11254 (06 Jun 2024)

www.hazwasteonline.com 9ZSIL-ZFKYX-G8GLA Page 17 of 18

This classification utilises the following guidance and legislation:

WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EÚ) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

17th ATP - Regulation (EU) 2021/849 of 11 March 2021

18th ATP - Regulation (EU) 2022/692 of 16 February 2022

19th ATP - Regulation (EU) 2023/1434 of 25 April 2023

20th ATP - Regulation (EU) 2023/1435 of 2 May 2023

21st ATP - Regulation (EU) 2024/197 of 19 October 2023

Page 18 of 18 9ZSIL-ZFKYX-G8GLA www.hazwasteonline.com

Appendix 6 Survey Data

Survey Data

Location	Irish Transverse Mercator		Elevation	Irish National Grid	
	Easting	Northing	Elevation	Easting	Northing
Cable Percussive Boreholes					
BH01	690165.209	718051.001	118.13	290234.181	218021.074
BH02	690194.962	717993.250	119.17	290263.941	217963.311
BH03	690222.573	718062.963	116.57	290291.558	218033.039
Trial Pits					
TP01	690133.629	718036.341	118.64	290202.594	218006.411
TP02	690173.432	718003.616	119.27	290242.406	217973.679
TP03	690224.296	718002.027	118.76	290293.281	217972.090
TP04	690228.449	718025.127	118.11	290297.435	217995.195
TP05	690207.844	718050.177	115.49	290276.825	218020.250

